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In  this paper we consider the flow field induced in an incompressible viscous 
conducting fluid, occupying the interior of a right circular cone, by an electric- 
current source situated at the vertex of the cone. We assume that the velocity 
field is small and its effect on the electromagnetic field is negligible. A similarity 
solution is obtained for the non-linear problem. This solution is an adaptation 
of Slezkin’s solution for the momentum transfer through a viscous jet and, 
apart from the numerical solution of a Riccati type of equation, is exact. 
In particular, we investigate the case when the half angle of the cone is &r and 
the fluid occupies the whole space on one side of an infinite plane. We also 
consider the corresponding inviscid flow problem that was recently investigated 
by another author and suggest that the solution obtained is not physically 
realistic. 

1. Introduction 
In some practical problems, such as in arc weIding and electrochemistry, a 

current is passed through a conducting fluid. If the Lorentz force which is set 
up by the current and the associated magnetic field is rotational, a flow field 
will be induced. Recently Shercliff (1970)) in an attempt to gain some under- 
standing of the physics of the problem, investigated the flow field set up in an 
inviscid fluid by the Lorentz force due to a current source and the associated 
magnetic field. The current is supplied through a small hole (mathematically a 
point) of the wall bounding the semi-infinite region occupied by the fluid. 
Shercliff, by making the further assumption that the flow field is weak and its 
effect on the electromagnetic field is negligible, constructed a solution for this 
problem. The boundary conditions used by Shercliff make the velocity field have 
a singularity along the axis of the source. Shercliff suggests that it is necessary 
to choose these boundary conditions in order to make the vorticity finite near 
the wall. One might of course suggest a different and physically more realistic 
set of boundary conditions, namely finite velocity along the axis and large 
vorticity (due perhaps to a vortex sheet) near the wall. This suggested set of 
boundary conditions, however, makes the stream function of the flow field 
imaginary and thus does not give a solution. 

It is not difficult to recognize that all the trouble is due to the assumption that 
the fluid is inviscid. This assumption reduces the order of the fundamental 
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(momentum) equation of the flow field. Here we include viscosity in the momen- 
tum equation, though we still neglect the effect of the velocity on the electro- 
magnetic field. The velocity field obtained is finite everywhere. It is, however, 
found that, when JE/pu2 (J, is the total current of the source, p the fluid density 
and Y the coefficient of kinematic viscosity) exceeds a certain magnitude, the 
velocity field has singularities. 

2. Equations of the problem 
We consider a uniform viscous incompressible conducting fluid, of density p 

and coefficient of kinematic viscosity v, occupying the interior of a right circular 
cone. We use a spherical polar co-ordinate ( r ,  6, q5) system with the origin at  the 
vertex of the cone and the line 6’ = 0 along the axis of the cone. The generators 
of the cone are given by 6’ = 6,. At the vertex of the cone there is a source 
supplying a current J, to the fluid. We assume that the induced flow field is 
small and its effect on the electromagnetic field is negligible; that is, we assume 
that the current is driven solely by the electrostatic field. We also assume that 
in the fluid the current is purely radial and symmetric with respect to the line 
6’ = 0; that is, we assume that the current density j is given by 

j = P Jof’(,u)/2m2, (1) 

where p = cos 8 and a prime denotes differentiation with respect to p. Since the 
total current is J,, a constant, we must have 

f ( l ) - f ( P o )  = 1, (2) 
where po = cos 6,. On using the equation V x B = 4nj, we find that the associated 
magnetic field is given by 

(3) €3 = 4 x 2 J , [ f ( l )  -f(iu)llr(l -,u2)*, 
and is zero along the axis 8 = 0. 

It is obvious, from the overall symmetry of the problem, that the velocity 
field is also symmetric about the axis 8 = 0. It is thus convenient to satisfy the 
equation of continuity by introducing a stream function $, so that the fluid 

On eliminating the pressure from the momentum equation our governing 

( 5 )  

equation, in the steady state, becomes 

pV x [(V x v) x v] = V x (j x B) - upV x V x (V x v). 

The only physical parameters appearing in this problem are J, which has 
dimensions IM*L*T-I, p which has dimensions ML-3 and v having dimensions 
L2T-I. Since the dimensions of w are the same as those of J,/p* we cannot form 
a fundamental time and a fundamental length parameter and we must find a 
solution by a similarity method. Thus we set 
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The electrical conductivity CT of the fluid has the dimensions of llv and does 
not affect the above dimensional argument. cr, however, appears in the induction 
equation and shows when we can neglect the effect of the velocity on the electro- 
magnetic field. Prom this equation we have 

V X V X B = ~ ~ T C T V X ( V X B ) .  

The right-hand side of this equation is of order vcrg relative to its left-hand side. 
Therefore the condition that the right-hand side of this equation, and the effect 
of the flow on the electromagnetic field are negligible, is 

vCTg < 1. 

Since the electric field and j are curl free we must also havef” = 0. In  view of (2) 

f(P) = P/(l  -Po). 

Equation ( 5 )  has only one component which is in the azimuthal direction. 
From (l), (3), (4) and (6) we find that this component is given by 

or 
a 3  7 g2 = 2( 1 - /2) g’v - Spg”’ - 2K[f( 1)  - f (p) ] f ’ (p) / (  1 -p2). 
@ (7 )  

When K = 0, (7) becomes identical with the equation occurring in the momen- 
tum transfer through a jet. The general solution of this equation, when K = 0, is 

where u, b and c are arbitrary constants. This solution was obtained by Slezkin 
(1934) and has been discussed by several authors and reviewed by Whitham 
(1963, pp. 150-155) and by Batchelor (1967, pp. 205-211). The right-hand side 
of (7) is linear in g and thus the solution of (7) is 

g2 = 2( 1 -p2)  9’ + 4 j ~ g  +up2 + bp+ C, (8)  

92 = 2( 1 -p2) g‘ + 4pg + up2 + bp + c - 2KF(p), (9) 
where F(p)  is the expression obtained by integrating [f( 1)  - f (p) ] f ’ (p) / (  1 -p2) 

three times. 
The velocity is zero when p = po and therefore g(po) = g’(po) = 0. When 

p = 1 the velocity is finite and therefore g(1) = 0 and g‘(1) is $nite. These 
boundary conditions require 

ap,2+bpo+c = 2KP(p0); u+b+c = 2KF(1); 2u+b = ZKP’(1). (10) 

Equation (9) is a Riccati type of equation and by the substitution 

g = -2(l-p2)u’/u 
is transformed into 

U u“ = [a$ + bp + c - 2KP(p)]. 4( 1 - p2)2 

The boundary conditions for the solution of (12) are 

u(po) = const., say u(po) = 1, and u’(po) = 0. (13) 

When po is given, the solution of (12) is a straightforward job. The flow 
field is then computed from (6) and (4). 
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The pressure p ,  obtained by integrating the momentum equation, is given by 

P = P* + v2PP(P)lrZ, 

where p m  is the pressure a t  infinity and 

This expression for the pressure, apart from the last term, which is due to the 
j x B force, is identical to the corresponding expression occurring in the momen- 
tum transfer through a jet [see equation (88) of Whitham's (1963) article]. 

- \ \'" r i i  - 
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FIGURE 1. Streamlines for the case K = 1. The numbers on the streamlines are values of + measured in units of vL, where L is a characteristic length. The distances along tho axes 
are in units of I/. 

3. Uniform current source through a plane infinite wall 
In this case 

Po = 0; f ( P )  = P ;  = *(I +PI2 log (1 +-PI- 

From the boundary conditions (10) we obtain 

u = 2K, b = (41og2-2)K, c = 0 
and therefore 

[(410g 2 - 2 )  /A+ 2p2 - (1 +,U)'lOg (1 +P)]. (15) 
N Ku u =  

4(1 -,u')' 

The coefficient of u in (15) is negative and is a slowly varying function of ,U 

(0 Q p Q 1). Its maximum absolute value is about 0-0125K. Thus, for small and 
moderate values of K ,  U" is small and proportional to K .  It follows then from 
(13) that so is u'. Thus, u decreases slowly as K increases and g/K is almost 
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independent of K.  This was confirmed by a numerical solution of (15) which 
showed that 

and therefore g/K,  increase very slowly as K increases. Percentagewise this 
increase is larger for larger p. Thus, when p is small the values of (16) for the 
cases when K is 10 and K is 0.01 are almost identical. Even around the point 
,u = 1, the difference in the two sets of values of (16) corresponding to the cases 
K = 0-01 and K = 10 is only about 2.7 yo. From this discussion and (6) it 
follows that for small and moderate values of K the intensity of the flow field is 
proportional to vK N Jilvp, provided vgg < 1. 

Table 1 shows values of u, u', u" and g for various values of ,u for the case K = 1. 
Streamlines for the same value of K are shown in figure 1. 

u'IKu, (16) 

P U 10026' 1 OOU" l0Og 
0 1~0000 0 0 0 
0.1 1~0000 - 0.0274 - 0.4608 0.0489 
0.2 0.9999 - 0'0868 - 0.7602 0.1667 
0.3 0.9998 - 0.1733 - 0.9544 0.3154 
0.4 0.9996 - 0.2754 - 1.0784 0.4628 
0.5 0.9993 - 0.3874 - 1.1548 0.5815 
0.6 0.9988 - 0.5052 - 1.1983 0.6475 
0-7 0.9982 - 0.6263 - 1.2189 0.6399 
0.8 0.9976 - 0.7485 - 1.2234 0.5402 
0.9 0-9967 - 0.8706 - 1.2167 0.3319 
1 .o 0.9958 - 0.9916 - 1.2021 0 

TABLE 1. Values of u, u', u" and g for the case K = 1 

As K increases, the coefficient of u on the right-hand side of (15) increases 
and u' and us incrcase in magnitude and u decreases. Thus when K = 100 the 
magnitude of (16) at p = 1 is about 39.2% larger than that when K = 0.01. 
If we continue to increase K a stage will be reached when u( 1) = 0. A numerical 
solution of (15) shows that this occurs when Kis  about 300.1. This means that, 
when K is about 300.1, g ( l )  4 0 and our velocity field has a singularity on the 
axis. This, of course, is not realistic. Just before this breakdown occurs the 
velocity field is large and we cannot any more neglect its effect on the electro- 
magnetic field. We think that, even when account is taken of the effect of the 
velocity on the electromagnetic field, there is a critical value of K ,  say K,, 
which, if exceeded, makes the velocity field have singularities. It is possible 
that K ,  > 300.1. 

Table 2 shows values of U ,  u', uR and g for various values of ,u for the case 
K = 300. The last columns of tables 1 and 2 show that g(p)/K increases as K 
increases; that is, for a given fluid the intensity of the flow field increases faster 
than J,2. As explained above, this increase is larger near the axis of the source, 
and is more pronounced for large K .  For small and moderate K ,  as K increases 
the increase in g/K is minimal, even near the axis of the source. Streamlines for 
the case K = 300 are shown in figure 2. Note the difference in the intensity and 
structure of the flow field near the axis of the current source between the cases 
for which K = 1 and K = 300. 
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ru U U' U" 100glK 
0 1~0000 0 0 0 

0.0490 0.1 0.9974 - 0.0740 - 1.3790 
0.2 0.9815 - 0.2586 - 2.2386 0.1686 
0.3 0.9436 - 0.5086 - 2.7020 0.3270 
0.4 0.8788 - 0.7883 - 2.8444 0.5023 
0.5 0.7859 - 1.0687 - 2.7246 0.6800 
0.6 0.6658 - 1.3263 - 2.3965 0.8499 
0.7 0.5220 - 1,5428 - 1.9121 1.0049 
0.8 0.3591 - 1'7052 - 1.3212 1.1397 
0.9 0-183Q - 1.8051 - 0.6703 1-2492 
1.0 0.0003 - 1.8386 - 0.001 1 0 

TABLE 2. Values of u, u', u" and g/K for the case K = 300 

4. The inviscid fluid case 
The problem of the last section was recently considered by Shercliff for the 

case when the fluid is inviscid. Below we briefly review Shercliff's solution and 
contrast it with our solution, in the limit as Y tends to zero. 

When v = 0 we set 

where Kg = 2J37~p.  

The equation satisfied by go [equivalent to our equation (9)] is 

g; = a o ~ ~ + b , p f - c , - ( 1 + ~ ) 2 1 0 g ( 1 + ~ ) ,  ( '7)  

I I 1 1 I I I 1 1 
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FIGURE 2. Streamlines for the case K = 300. The numbers on the streamlines are values 
of +/K measured in units of vL, where L is a chara,cteristic length. The distances along 
the axes are in units of L. 
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where a,, b, and c, are constants of integration. The pressure p is given by 

P = Pa3 + PK:P(,u)/r2, 

31 

wherep, is the pressure at  infinity. P(,u), obtained from the momentum equation, 
is given by 

On the plane p = 0, the normal component of the velocity is zero; that is, 
g,(O) = 0 and therefore co = 0. The velocity must be finite on the axis (p = 1); 
that is, go (1) and g i  are finite. This boundary condition requires that the right- 
hand side of (17) has a double zero at  p = 1. Simple arithmetic shows that, if 
we satisfy this reasonable boundary condition as well, the right-hand side of 
(17) becomes negative and thus the problem has no solution. Shercliff, however, 
constructed a solution by modifying the boundary conditions. He made the 
normal component of the velocity zero on the plane ,u = 0 but he imposed the 
condition that the radial component of the velocity is finite near the plane 
,u = 0; that is, he assumed that the right-hand side of (17) has a double zero at 
,u = 0. He also assumed that the right-hand side of (17) had only one simple 
zero at  p = 1. This modification implies, of course, that the radial component of 
the velocity is infinite along the axis of the source. There is no explanation, 
however, why we should have infinite velocity there. Indeed, the general 
question arises as to whether a solution that has singularities is permissible 
and, if so, whether Shercliff’s inviscid flow solution is physically realistic. 
Note that in the momentum transfer through a fluid jet which was reviewed 
by Batchelor (1 967) and by Whitham (1963) the velocity field is not allowed to 
have singularities except at  the origin. 

It would be instructive, in order to understand what happens to the solution 
when the viscosity is small, to look into our solution of the viscous flow problem 
as K increases and becomes larger than its critical value of 300.1. Obviously, the 
singularity moves away from the axis into the fluid [see equations (1 1) and (15)]. 
The singularity in the flow occurs, of course, along the generators of a cone 
having as axis the axis of symmetry of the problem. When K increases sufficiently 
and becomes, say, K,, another singularity appears along the axis. When K 
becomes larger than K,  this singularity also moves away from the axis into the 
fluid. When K is sufficiently larger than K ,  another singularity will appear on 
the axis which is eventually thrown into the fluid. Thus, as K increases in- 
definitely, our flow field has more and more singularities. The inviscid flow 
solution proposed by Shercliff suggests that, when K tends to infinity and v 
tends to zero, vg(p, K )  [ = K o g o ( p ) ]  is finite everywhere except on the axis and 
all the singularities of the viscous flow problem are grouped on the axis. This is 
compensated by relaxing the viscous boundary conditions on the plane p = 0; 
that is, by not requiring g’(O), in fact vg’(0,K) [ = K,gi(O)], to be zero. 

In  practice, however, we do not have inviscid fluids but fluids with small 
viscosity. If Jg/p is also small so that 2J;/npv2 < 300.1 we must use the viscous 
flow solution. Note that the proposed inviscid flow solution suggests that the 
intensity of the flow field is proportional to KO-that is, proportional to J,- 
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whereas the viscous flow solution suggests that as J, increases the intensity of 
the flow field increases a t  least as fast as J,2. If v is non-zero and 2J,2lnpv2 > 300.1 
the velocity field has singularities. If we ignore the viscosity effects altogether 
we are, in effect, as explained above, replacing all the singularities of the 
solution by one singularityalong the axis of symmetry. We do not think that this 
approximation is justified and suggest that a solution based on this amalgama- 
tion of singularities is not i realistic one. 
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